Schemes & co

mario

  1. S. Pavan, J.M. Hervouet, M. Ricchiuto and R. Ata, A second order residual based predictor-corrector approach for time dependent pollutant transport problems. J.Comput.Phys. 2016. In press
  2. L. Arpaia, M. Ricchiuto and R.Abgrall. An ALE formulation for explicit Runge-Kutta residual distribution. Journal of Scientific Computing, 63:502–547, 2015.
  3. J. Dobes, M. Ricchiuto, R. Abgrall and H. Deconinck. On hybrid residual distribution-Galerkin discretizations for steady and time dependent viscous laminar flows. Computer Methods in Applied Mechanics and Engineering, 283:1336–1356, 2015. (PDF)
  4. A. Warzynski, M. Hubbard and M. Ricchiuto. Runge-Kutta residual distribution schemes. Journal of Scientific Computing, 62(3):772–802, 2015.
  5. R. Abgrall, D. deSantis and M. Ricchiuto. High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids. SISC – SIAM Journal of Scientific Computing, 36(3):A955–A983, 2014.
  6. R. Abgrall, G. Baurin, D. DeSantis, A. Krutz and M. Ricchiuto. Numerical approximation of parabolic problems by residual distribution schemes. International Journal of Numerical Methods in Fluids, 71(9), 2013.
  7. M. Hubbard and M. Ricchiuto. Discontinuous upwind residual distribution: A route to unconditional positivity and high order accuracy. Computers & Fluids, 46(1):263 – 269, 2011.
  8. R. Abgrall, G. Baurin, P. Jacq and M. Ricchiuto. Some examples of high order parallel simulations of inviscid flows on unstructured and hybrid meshes by residual distribution schemes. Computers & Fluids, 61:6–13, 2012.
  9. R. Abgrall, A. Larat and M. Ricchiuto. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. J.Comput.Phys., 230(11):4103 – 4136, 2011.
  10. N. Villedieu, T. Quintino, M. Ricchiuto and H. Deconinck. Third order residual distribution schemes for the Navier-Stokes equations. J.Comput.Phys., 230(11):4301 – 4315, 2011.
  11. M. Ricchiuto and R. Abgrall. Explicit Runge-Kutta residual distribution schemes for time dependent prob- lems: Second order case. J.Comput.Phys., 229(16):5653 – 5691, 2010.
  12. R. Abgrall, A. Larat, M. Ricchiuto and C. Tavé. A simple construction of very high order non-oscillatory compact schemes on unstructured meshes. Computers & Fluids, 38(7):1314 – 1323, 2009.
  13. M. Ricchiuto, N. Villedieu, R. Abgrall and H. Deconinck. On uniformly high-order accurate residual dis- tribution schemes for advection-diffusion. Journal of Computational and Applied Mathematics, 215(2):547 – 556, 2008.
  14. J. Dobes, M. Ricchiuto and H. Deconinck. Implicit space-time residual distribution method for unsteady laminar viscous flow. Computers & Fluids, 34(4-5):593 – 615, 2005.
  15. M. Ricchiuto, A. Csík and H. Deconinck. Residual distribution for general time dependent conservation laws. J.Comput.Phys., 209(1):249–289, 2005
  16. A. Csík, M. Ricchiuto and H. Deconinck. A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J.Comput.Phys., 179(2):286–312, 2002

  17. M. Vymazal, L. Koloszar, S. D’Angelo, N. Villedieu, M. Ricchiuto and H. Deconinck. High-order residual distribution and error estimation for steady and unsteady compressible flow. In N. Kroll, C. Hirsch, F. Bassi, C. Johnston and K. Hillewaert, editors, IDIHOM: Industrialization of High-Order Methods – A Top-Down Approach, volume 128 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 381– 395. Springer International Publishing, 2015. doi:10.1007/978-3-319-12886-3_17.
  18. R. Abgrall, R. Butel, P. Jacq, C. Lachat, X. Lacoste, A. Larat and M. Ricchiuto. Implicit strategy and parallelization of a high order residual distribution scheme. In N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven and K. Sorensen, editors, ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 209–224. Springer Berlin / Heidelberg, 2010.
  19. R. Abgrall, A. Larat and M. Ricchiuto. Construction of high-order non upwind distribution schemes. In N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven and K. Sorensen, editors, ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 107–128. Springer Berlin / Heidelberg, 2010.
  20. R. Abgrall, A. Larat and M. Ricchiuto. Construction of high order residual distribution schemes. In M. Hafez, K. Oshima and D. Kwak, editors, Computational Fluid Dynamics Review 2010. Worls Scientific, 2010. ISBN 978-981-4313-36-0.
  21. R. Abgrall, A. Larat and M. Ricchiuto. Construction of high order residual distribution schemes. VKI LS 2008-08, 35th Computational Fluid dynamics/ADIGMA Course on very high order discretization methods, von Karman Institute for Fluid Dynamics, 2008.
  22. H. Deconinck and M. Ricchiuto. Residual distribution schemes: foundation and analysis. In E. Stein, R. de Borst and T. Hughes, editors, Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd., 2007. DOI: 10.1002/0470091355.ecm054.  (gzipped PDF)
  23. M. Ricchiuto, N. Villedieu, R. Abgrall and H. Deconinck. High order residual distribution schemes: dis- continuity capturing crosswind dissipation and extension to advection diffusion. VKI LS 06-01, 34th CFD course, von Karman Insitute for Fluid Dynamics, 2005. ISBN 2-930389-63-X.
  24. A. Csik, M. Ricchiuto and H. Deconinck. Residual distribution for two-dimensional Euler and two-phase flow simulations. In Périaux, Champion, Gagnepain, Pironneau, Stoufflet and Thomas, editors, Fluid Dynamics and Aeronautics : New Challenges, Series of Handbooks on Theory and Engineering Applications of Computational Methods, pp. 243–266. 2003. ISBN 84-95999-12-9.
  25. Á. Csík, M. Ricchiuto and H. Deconinck. Space time residual distribution schemes for hyperbolic con- servation laws over linear and bilinear elements. VKI LS 2003-05, 33rd Computational Fluid dynamics Course, von Karman Institute for Fluid Dynamics, 2003.
  26. H. Deconinck, M. Ricchiuto and K. Sermeus. Introduction to residual distribution schemes and stabilized finite elements. VKI LS 2003-05, 33rd Computational Fluid dynamics Course, von Karman Institute for Fluid Dynamics, 2003.
  27. J. Dobes, M. Ricchiuto and H. Deconinck. Implicit space-time residual distribution method for unsteady laminar viscous flow. VKI LS 2003-05, 33rd Computational Fluid dynamics Course, von Karman Institute for Fluid Dynamics, 2003.
  28. M.Mezine,M.Ricchiuto,R. Abgrall and H.Deconinck. Monotone and stable residual distribution schemes on prismatic space-time elements for unsteady conservation laws. VKI LS 2003-05, 33rd Computational Fluid dynamics Course, von Karman Institute for Fluid Dynamics -, 2003.
  29. M. Ricchiuto, R. Abgrall and H. Deconinck. Construction of very high order residual distribution schemes for unsteady advection: preliminary results. VKI LS 2003-05, 33rd Computational Fluid dynamics Course, von Karman Institute for Fluid Dynamics, 2003.

  30. M. Ricchiuto, A (unifed) variational look at some high order schemes for CFD. In Workshop on high order methods for atmospheric flows. European Center for Medium-Range Weather Forecasts, Reading, UK, February 2014
  31. R. Abgrall, L. Arpaia and M. Ricchiuto, ALE formulation for explicit Runge-Kutta Residual Distribution, procs of Finite Volumes for Complex Applications VII, Berlin June 2014; Fuhrmann,  Ohlberger and Rohde Eds., Springer Proceedings in Mathematics and Statistics 77, 2014
  32. M. Hubbard, M. Ricchiuto and D. Sarmany, Space-time residual distribution schemes on moving meshes, 25th Biennial Conference on Numerical Analysis, University of Strathclyde (UK), June 2013 (PDF)
  33. R. Abgrall, D. DeSantis and M. Ricchiuto, Implicit high order residual distribution scheme for three-dimensional turbulent compressible flows, HONOM 2013: European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs – theory and applications, Bordeaux (France), March 2013
  34. D.A. Mbengoue, D. Genet, C. Lachat, E. Martin, M. Moge, V. Perrier, F. Renac, F. Rue and M. Ricchiuto, Comparison of high order algorithms in Aerosol and Aghora for compressible flows, ESAIM: PROCEEDINGS, 43, pp. 1-16, 2013 (PDF)
  35. R. Abgrall, D. DeSantis and M. Ricchiuto, Construction of a High order Residual Distribution scheme for complex viscous flow, 7th Int. Conf. on Comput. Fluid Dyn – ICCFD7, 2012 (PDF)
  36. M. Hubbard, M. Ricchiuto and A. Warzynski, Discontinuous-in-space explicit Runge-Kutta residual distribution schemes for hyperbolic conservation laws, Eight Int. Conf. on Scientific Computing and Applications, Las Vegas 2012
  37. A. Warzynski, M. Hubbard and M. Ricchiuto, Discontinuous-in-space explicit Runge-Kutta residual distribution schemes for time dependent problems, Numerical Methods for Hyperbolic Equations, University of Santiago de Compostela, 5th July 2011
  38. R. Abgrall and M. Ricchiuto, Very high order residual distribution schemes for steady and unsteady flows on hybrid meshes, ONERA Scientific Day: High fidelity flow simulations, 2010
  39. R. Abgrall, A. Larat, A. Krust, G. Baurin and M. Ricchiuto, Very high order residual distribution schemes, ECCOMAS CFD, Lisbon 2010
  40. M. Ricchiuto and R. Abgrall, Explicit Runge-Kutta residual distribution for shallow water flows, ECCOMAS CFD, Lisbon 2010
  41. M. Hubbard and M. Ricchiuto, Discontinuous fluctuation distribution: A route to unconditional positivity and high order accuracy, ICFD 2010 International Conference on Fluid Dynamics, Reading (UK), April 2010
  42. M. Ricchiuto, R. Abgrall and A. Larat, Non-oscillatory high-order residual distribution schemes for the Euler equations, First symposium on Current and New Trends in Scientific Computing, Santiago (Chile), October 2009 (invited talk, gzipped PDF)
  43. M. Hubbard and M. Ricchiuto, An unconditionally positive scheme for time dependent hyperbolic conservation laws, 23rd Biennial Conference on Numerical Analysis, University of Strathclyde (UK), June 2009
  44. A. Larat, R. Abgrall and M. Ricchiuto, Construction of high order residual distribution schemes for compressible flow problems, ICOSAOM 09, International Conference on Spectral and High Order Methods, Trondheim (Norway), June 2009
  45. A. Larat, R. Abgrall and M. Ricchiuto, Very high order residual distribution for steady flow problems, In: Computational Fluid Dynamics 2008, pp. 269-274, Springer Berlin Heidelberg, 2009
  46. R. Abgrall, M. Ricchiuto, C. Tave and A. Larat, Non-oscillatory very high order Residual Distribution schemes for steady hyperbolic conservation laws : preliminary results, 14th International Conference on Finite Elements in Flow Problems, Santa Fe, New Mexico (USA), March 2007
  47. B. Braconnier, B. Nkonga, M. Papin, P. Ramet, M. Ricchiuto, J. Roman and R. Abgrall, Efficient solution technique for Low Mach number compressible Multiphase Flow, ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics, The Netherlands, September 2006
  48. R. Abgrall, M. Ricchiuto, N. Villedieu, C. Tave and H. Deconinck, Very high order residual distribution on triangular grids, ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics, The Netherlands, September 2006
  49. N. Villedieu-Ligout, M. Ricchiuto and R. Abgrall, and H. Deconinck, High order Residual Distribution : discontinuity capturing, crosswind dissipation, and diffusion, ICCFD4, 4th International conference on computational fluid dynamics, Belgium, July 2006 (gzipped PDF)
  50. M. Ricchiuto and R. Abgrall, Stable and convergent Residual Distribution for time-dependent conservation laws, ICCFD4, 4th International conference on computational fluid dynamics, Belgium, July 2006 (gzipped PDF)
  51. M. Ricchiuto, A. Csik and H. Deconinck, Conservative Residual Distribution Schemes for General Unsteady Systems of Conservation Laws, ICCFD3, 3rdInternational conference on computational fluid dynamics, Toronto (Canada), July 2004 (gzipped PDF)
  52. M. Ricchiuto, D.T. Rubino, J.A.S. Witteveen and H. Deconinck, A Residual Distributive Approach for One-Dimensional Two-Fluid Models and its Relation to Godunov Finite Volume Schemes, ASTAR International Workshop on ”Advanced Numerical Methods for Multidimensional Simulation of Two-phase Flow”, Garching (Germany) September 2003 (gzipped PDF)
  53. J. Dobes, M. Ricchiuto and H. Deconinck, Implict space-time residual distribution method for unsteady viscous flow, Proceedings of the 16thAIAA CFD conference, Florida (USA), June 2003 (gzipped PDF)
  54. T. Quintino, M. Ricchiuto, A. Csik, H. Deconinck and S. Poedts, Conservative Multidimensional Upwind Residual Distribution for Arbitrary Finite Elements, ICCFD2, 2ndInternational conference on computational fluid dynamics, Australia, July 2002 (gzipped PDF)
  55. A. Csik, M. Ricchiuto and H. Deconinck, Space-Time Residual Distribution for hyperbolic conservation laws, Proceedings of the 15th AIAA CFD conference, California (USA), June 2001 (gzipped PDF)
  56. E.Valero, M. Ricchiuto and G. Degrez, Two-phase flow computations using a two-fluid model and fluctuation splitting schemes, Trends in numerical and Physical modeling of industrial two-phase flows, Cargese (France), September 2000 (PDF)

  57. R. Abgrall and M. Ricchiuto. High order methods for CFD. Encyclopedia of Computational Mechanics, 2016. Invited contribution, to appear.
  58. A. Mazaheri, M. Ricchiuto and H. Nishikawa. A first-order hyperbolic system approach for dispersion. J.Comput.Phys., 2016. Under review.
  59. P. Roe and M. Ricchiuto. Multidimensional solvers and residual distribution schemes. Handbook on numerical methods for hyperbolic problems. Volume II: Applied and modern issues, 2016. Invited contribution, in preparation.