Mesh adaptation & co


  1. L. Nouveau, H. Beaugendre, C. Dobrzynski, R. Abgrall and M. Ricchiuto. An adaptive, residual based, splitting approach for the penalized navier stokes equations. Comp.Meth.Appl.Mech.Eng., 2016. In press. doi:

  2. S. D’Angelo, M. Ricchiuto and H. Deconinck. Adjoint-based error estimation for adaptive Petrov-Galerkin nite element methods. In Adjoint methods and their application in Computational Fluid Dynamics, 38th Lecture Series on Advanced Computational Fluid Dynamics. von Karman Institute for Fluid Dynamics, Belgium, 2015. (PDF)

  3. L. Arpaia and M. Ricchiuto, Mass conservation and well-balancedness for adaptive shallow water simulations. ECCOMAS Congress 2016, Crete (accepted)
  4. L. Arpaia and M. Ricchiuto, Simple and conservative mesh adaptation for shallow water flows, Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Sep 2015, Oberwolfach, Germany. 2015 (invited talk, short note password protected PDF)
  5. L. Nouveau, H. Beaugendre, M. Ricchiuto, R. Abgrall, C. Dobrzynski and A. Froehly, Mesh adaptation by local remeshing and application to immersed boundary methods in fluid mechanics. Workshop DIP INRIA/TOTAL, Jun 2015, Pau, France. 2015
  6. L. Arpaia and M. Ricchiuto, Well Balanced ALE: on time dependent adaptation for shallow water flows. GAMM 86th Annual Scientific Conference, Mar 2015, Lecce, Italy, 2015, Lecce, Italy. 2015, GAMM 86th Annual Scientific Conference, Mar 2015, Lecce, Italy
  7. H. Beaugendre, L. Nouveau, C. Dobrzynski, R. Abgrall and M. Ricchiuto, Unsteady residual distribution schemes adapted to immersed boundary methods on unstructured grids to account for moving bodies, 13th US National Congress on Computational Mechanics, Jul 2015, San Diego, United States
  8. L. Arpaia and M. Ricchiuto, Well-balanced ALE: a framework for time dependent mesh adaptation for the shallow water equations, SIAM Conf. on Nonlinear Waves and Coherent Structures, Cambridge (UK) August 2014 (PDF)
  9. S. D’Angelo, H. Deconinck and M. Ricchiuto, Adjoint based error estimation and goal oriented mesh adaptation for Petrov-Galerkin Finite Element methods applied to compressible flow, 19th IMACS World Congress – El Escorial (Spain), August 2013

  10. S. D’Angelo, M. Ricchiuto, H. Deconinck and R. Abgrall. Adjoint-based error estimation for adaptive Petrov-Galerkin finite element methods – Part I. Computer Methods in Applied Mechanics and Engineering, 2016. Under review.
  11. L. Arpaia and M. Ricchiuto, Mass conservative and well balanced r-adaptation for shallow water simulations on triangular meshes, in preparation (short note, Oberwolfach workshop, password protected pdf)