Journal papers

  1. S. Bellec, M. Colin and M. Ricchiuto,  Discrete Asymptotic Equations for Long Wave Propagation, SIAM J. Numer. Anal., 54(6):3280–3299, 2016
  2. A. Mazaheri, M. Ricchiuto and H. Nishikawa, A first-order hyperbolic system approach for dispersion, J.Comput.Phys., 321:593 – 605, 2016.
  3. S. Pavan, J.M. Hervouet, M. Ricchiuto and R. Ata, A second order residual based predictor-corrector approach for time dependent pollutant transport problems. J.Comput.Phys., 318:122 – 141, 2016
  4. P. Bonneton, A. Filippini, L. Arpaia, N. Bonneton and M. Ricchiuto. Conditions for tidal bore formation in convergent alluvial estuaries. Estuarine, Coastal and Shelf Science, 172:121 – 127,  2016 (PDF)
  5. A. Filippini, M. Kazolea and M. Ricchiuto. A flexible genuinely nonlinear approach for wave propagation, breaking and runup. J.Comput.Phys., 310:381–417, 2016. (PDF)
  6. L. Nouveau, H. Beaugendre, C. Dobrzynski, R. Abgrall and M. Ricchiuto. An adaptive, residual based, splitting approach for the penalized Navier-Stokes equations. Comp.Meth.Appl.Mech.Eng., 303:208-230, 2016.
  7. M. Ricchiuto. An explicit residual based approach for shallow water flows. J.Comput.Phys., 280:306–344, 2015. (PDF)
  8. L. Arpaia, M. Ricchiuto and R.Abgrall. An ALE formulation for explicit Runge-Kutta residual distribution. Journal of Scientific Computing, 63:502–547, 2015.
  9.  J. Dobes, M. Ricchiuto, R. Abgrall and H. Deconinck. On hybrid residual distribution-Galerkin discretizations for steady and time dependent viscous laminar flows. Computer Methods in Applied Mechanics and Engineering, 283:1336–1356, 2015. (PDF)
  10. A. Filippini, S. Bellec, M. Colin and M. Ricchiuto. On the nonlinear behavior of Boussinesq type models: amplitude-velocity vs amplitude-flux forms. Coastal Engineering, 99:109–123, 2015. (PDF)
  11. A. Warzynski, M. Hubbard and M. Ricchiuto. Runge-Kutta residual distribution schemes. Journal of Scientific Computing, 62(3):772–802, 2015.
  12. M. Ricchiuto and A. Filippini. Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries. J.Comput.Phys., 271:306–341, 2014. (PDF)
  13. R. Abgrall, D. deSantis and M. Ricchiuto. High-order preserving residual distribution schemes for advection-diffusion scalar problems on arbitrary grids. SISC – SIAM Journal of Scientific Computing, 36(3):A955–A983, 2014.
  14. R. Abgrall, G. Baurin, D. DeSantis, A. Krutz and M. Ricchiuto. Numerical approximation of parabolic problems by residual distribution schemes. International Journal of Numerical Methods in Fluids, 71(9), 2013.
  15. D. Sarmany, M. Hubbard and M. Ricchiuto. Unconditionally stable space-time discontinuous residual distribution for shallow water flows. J.Comput.Phys., 253:86–113, 2013.
  16. R. Abgrall, G. Baurin, P. Jacq and M. Ricchiuto. Some examples of high order parallel simulations of inviscid flows on unstructured and hybrid meshes by residual distribution schemes. Computers & Fluids, 61:6–13, 2012.
  17. R. Abgrall, A. Larat and M. Ricchiuto. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. J.Comput.Phys., 230(11):4103 – 4136, 2011.
  18. M. Hubbard and M. Ricchiuto. Discontinuous upwind residual distribution: A route to unconditional positivity and high order accuracy. Computers & Fluids, 46(1):263 – 269, 2011.
  19. M. Ricchiuto. On the C-property and generalized C-property of residual distribution for the shallow water equations. Journal of Scientific Computing, 48:304–318, 2011.
  20. N. Villedieu, T. Quintino, M. Ricchiuto and H. Deconinck. Third order residual distribution schemes for the Navier-Stokes equations. J.Comput.Phys., 230(11):4301 – 4315, 2011.
  21. M. Ricchiuto and R. Abgrall. Explicit Runge-Kutta residual distribution schemes for time dependent prob- lems: Second order case. J.Comput.Phys., 229(16):5653 – 5691, 2010.
  22. R. Abgrall, A. Larat, M. Ricchiuto and C. Tavé. A simple construction of very high order non-oscillatory compact schemes on unstructured meshes. Computers & Fluids, 38(7):1314 – 1323, 2009.
  23. M. Ricchiuto and A. Bollermann. Stabilized residual distribution for shallow water simulations. J.Comput.Phys., 228(4):1071–1115, 2009.
  24. M. Ricchiuto, N. Villedieu, R. Abgrall and H. Deconinck. On uniformly high-order accurate residual dis- tribution schemes for advection-diffusion. Journal of Computational and Applied Mathematics, 215(2):547 – 556, 2008.
  25. M. Ricchiuto, R. Abgrall and H. Deconinck. Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes. J.Comput.Phys., 222:287–331, 2007.
  26. J. Dobes, M. Ricchiuto and H. Deconinck. Implicit space-time residual distribution method for unsteady laminar viscous flow. Computers & Fluids, 34(4-5):593 – 615, 2005.
  27. M. Ricchiuto, A. Csík and H. Deconinck. Residual distribution for general time dependent conservation laws. J.Comput.Phys., 209(1):249–289, 2005.
  28. H. Staedtke, G. Franchello, B. Worth, U. Graf, P. Romstedt, A. Kumbaro, J. Garcia-Cascales, H. Paillére, H. Deconinck, M. Ricchiuto, B. Smith, F. D. Cachard, E. Toro, E. Romenski and S. Mimouni. Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (ASTAR). Nuclear Engineering and Design, 235(2-4):379 – 400, 2005.
  29. A. Csík, M. Ricchiuto and H. Deconinck. A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J.Comput.Phys., 179(2):286–312, 2002